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The supersonic motion of an aerofoil through a 
temperature front 

By J. W. CRAGGS 
King’s College, Newcastle-upon- Tyne 

(Received 28 3 1 y  1957) 

SUMMARY 
A solution is given for the sound waves generated when an 

infinite wedge passes at supersonic velocity through the plane 
interface between different media. The results are then applied 
to the particular case when the two media consist of the same 
perfect gas at different temperatures. It is observed that the 
flow can be deduced for any symmetrical aerofoil of infinite span 
by superposition, and the case of a double wedge is considered 
in detail. 

INTRODUCTION 
When an aerofoil passes through the surface separating two media, 

as for example into a cloud, or through a temperature front, certain transient 
effects on the lift and drag are to be expected during the transition from one 
regime of steady flow to another. The transient effects will be examined 
by the method used in an earlier paper (Craggs 1956) on the reflection of 
sound waves. 

The method used is first to examine the motion due to an infinite wedge 
moving with constant velocity. The fluid motion may then be expected 
to possess dynamic similarity, the velocity distribution being the same at 
all times after the wedge has broken the surface, except for a scale factor 
depending on the depth of penetration. The solution for the wedge can 
then be extended to any symmetric aerofoil by the principle of superposition, 
within the limitations imposed by the linearized theory. It is assumed 
throughout that the fluid motion is sufficiently small for linearized theory 
to be adequate, and that the motion is strictly two-dimensional. 

1. THE EQUATION OF SOUND WAVES WITH DYNAMIC SIMILARITY 

Use polar coordinates ( ~ , 6 )  based on the point where the apex of the 
wedge cuts the surface of separation of the two media. Let t be the time 
measured from the instant at which the apex breaks the surface. Let c be 
the local velocity of sound and s the condensation, measured by the 
proportional increase in density due to fluid motion. Then the fluid 
velocity q is given by 

aq - = -cavs, 
at 
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Land the equation of motion is 
= aas/at2. 

Make the assumption of dynamic similarity and use A, 8 as independent 
variables, then (2) becomes 

~ y i  - hyC2)a2s/ah2 + x(i - 2~2/~2)as/ax + q a e 2  = 0. (3) 
Equation (3) is the same as the equation arising in the linearized theory 

,of steady three-dimensional flow when the cone-field method is used 
'(Ward 1955, p. 136) and the treatment here is similar. 

For X > c equation (3) is hyperbolic and can be reduced to the canonical 
form 

by the substitution secp = h/c. ( 5 )  

s =f(tL--)+g(P++) (6)  

The general solution'is then of the form 

where f and g are arbitrary functions, and particular cases can be solved 
by the method of characteristics. 

Equation (3) is elliptic for A < c and is reduced by the substitution 
X/c = sech( - v) (7) 

to the form 

Write s as the real part of a complex function w, where 

w = s + i r ,  (9) 

then from (8) = w(v + ie) (10) 

.and 

2. THE SOLUTION IN THE REGIONS WHERE THE EQUATION IS HYPERBOLIC 

For simplicity, assume that the wedge moves in the direction normal 
to the surface separating the two media. Let the motion be in the direction 
8 = i-72, and let pl, pa  be the densities in the regions 0 > 8 > --72 and 
0 < 8 < T,  respectively. Use the suffixes 1 and 2 consistently to refer 
to the two media. Consider a plane with polar coordinates A, 8 (figure 1). 
Then in the regions 0 < 8 < -T, h > c2 and 0 > 8 > -n, X > c, the 
.equations are of hyperbolic type, the characteristics being the tangents to 
the sonic circles, h = cay X = cl, respectively. 

Consider first the motion of the wedge with velocity V > cl before 
,the apex reaches the point r = 0. Then the motion is the familiar steady 

F.M. M 
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motion of a wedge with supersonic velocity and the solution is well known. 
There is a weak shock wave at the Mach angle +1 = sin-l(c1/V) to the 
direction of motion, attached at the apex of the wedge. In  front of the 
shock wave the velocity of the fluid is zero and the condensation is also 
zero. Behind the shock wave the condensation is 

s1 = u1 = Ml 6 sec &, (11) 
where Ml is the Mach number, Ml = V/cl, and 6 is the semi-angle of the 
wedge. 

Figure 1. 

To discuss the motion after the wedge has broken the surface, measure t 
from the instant at which the apex reaches the surface. Then the condition 
of steady motion gives the motion as t -+ 0 +, h -+ 00. The boundary 
conditions on the equations as h+ a3 are therefore 

(12) 
1 s1= u1, -4.. < e < --&r++l, 

-&7+$l < 8 < 0, I s1 = 0, 
and s2 = 0, o < e < hn, 
with similar conditions for i n  < 8 < i(3n). 

of trace 
Use of characteristics theory shows that there is a weak shock wave, 

h = c1 sec(+l - 0) (13) 

and of strength q. This is represented by the line HJ in figure 1. 
It is convenient to assume that clsec+, > c2, so that the point H ,  

where the shock wave cuts 8 = 0 lies outside of the circle A = c,. (Only 
slight alteration of the argument is needed when this assumption is false, 
and for the application contemplated, in which the difference in properties 
between the two media is small, the assumption certainly holds.) Further 
simple deductions from the theory of characteristics are that there are 
weak shock waves HK, H L  corresponding to the reflection and refraction 
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of the incident wave HJ at the interface, and a new shock wave FG attached 
at the apex of the wedge. The condensation behind FG is 

s2 = 17, = M, 6 sec +1, (14). 
where +, = sin-l(c,/V). The conditions behind H K ,  H L  can be deduced 
from the shock wave equations and the continuity of pressure 

(151, P1 ClSl = P2 4 s2, 

and of normal velocity C: asl/ae = cEas,/ae, (16) 

sl = 20, tan &/(tan +1 + k(m2 seca rjl - 1)1/2} = 17; (17) 

and c r l =  m2kal, (W 

2 

over the interface B = 0. The values are 

respectively, where m = c1/c2, k = p1/p2. 
The condensations are now known throughout the regions A > cl, 

h > c2 except for the triangular region ABE, and in this region the theory 
of characteristics shows only that 

the function g of equation (6)  being here constant and equal to ul. 
s1 = 01 + f d e  - PI, (19) 

3. REGIONS WHERE THE EQUATIONS ARE ELLIPTIC 

T o  discuss the region 0 < B < ir, A < c2 in which the equation for 
the condensation is elliptic, it is convenient to introduce a transformation 

which maps the region on the upper half of the ( plane. The closed boundary 
of the elliptic region maps into the axis q2 = 0, and the points 0, A,  B, 
L, G, C of figure 1 correspond to the points 
(a = 0, m2/(2 - m2), 1 ,  m2 sec2 +J(2  - m2 sec2 +), sec2 42(2 - S ~ C ~ + ~ ) ,  - 1 ,  (21) 
respectively. 

Now consider the section AB of the interface. On the lower side of AB 
sl is governed by a hyperbolic equation, and from (19) 

= t2 + iT2  = sech 2(v2 + 8) (20) 

- _ - -  - - ($ - l ) l / z s l  ae a, ah 7 

using (5). The continuity conditions (15) and (16) therefore give 

using (7) .  This relation holds on the line AB, and on this line 

c2 = f 2  = h2/(24 - P), 

so dw2 - { 1 -  - ((2-r:):-1)1’2}F((2) 
d52 m2k 2 

on the line, where F( f a )  is real on the line, and by the principle of analytic 
continuation equation (23) holds throughout the region q2 > 0. 

M2 
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The function F(5,) is to be determined subject to the following 

(i) Singularities of F are to be expected only at the points (21) and at 

(ii) For finite pressures, no singularity of dw2/dS2 may be of higher 

(iii) The point at infinity in the c2 plane is an ordinary point, since it 

(iv) From the conditions on the quarter circle BGC, 

conditions. 

at any zero of the function in brackets in (23). 

order than a simple pole. 

corresponds to an ordinary point, 8 = an, h = c2 in the (A, 8) plane. 

_ -  ;;: - 0 

for 72 = 0, - 03 < E2 < - 1 , l  < E 2  < 03. 

(v) The normal velocity on the surface of the wedge is constant, so 
8 ~ ~ / 8 8  = &,/ah = 0. On the corresponding section of the real axis v2 = 0, 
- 1 < t2 < 0, the condition i3s2/a5, = 0 holds. 

(vi) A careful examination of the conditions in the immediate 
neighbourhood of the point A of figure 1, with use of the continuity 
conditions across the interface, shows that F(5,) can contain only half- 
integer powers of the quantity (2 - m2)c2 - m2. 

A sufficiently general form for w2 is then given by 

m2k2( 1 - c2) + (2 - m2)5, - m2 1 .  mk( 1 - 52)1/2 + i{(2 - m2)5, - m2)1/2 
dS2 

For the solution in the region h < c,, - i n  < 8 < 0, a similar 
transformation 

cl = sech 2(vl + i8) 
is used, and (24), together with the continuity conditions across the 
interface OA, leads to 

1. m2k.I, dwl - [k{‘ - (2m2 - 1)51}112 - (1 - 5,)1/2 

d51 k2{ 1 - (2m2- 1)5,) - (1 - 5,) 
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The constants B, C, D, E are easily determined by an examination of 
the singularities at the points corresponding to G, L, K of figure 1. At G, 
for example, where 5, = sec2 4, / (2  - sec2 d2), there is a discontinuity of 
magnitude u, in s,, whereas at the corresponding point in the el plane, 
el = sec2 d2/(2m2 - seca q52),  there is no singularity, Applying the theory of 
residues in each plane, one obtains 

C + 2/2E(sec2 4, - m2)ll2 cos 4, 
mk tan 4, - (sec2 4, - m2)1'2 2mku2 = 

and C -  2/2mkEsin~#, = 0, 

whence E = 2/2mku2 sec q52 (30). 

and C = 2m2k2u2 tan 4,. (31) 
A similar argument based on the singularity in the 5, plane at 

c2 = m2 sec2 dl / (2  - m2 sec2 dl), corresponding to H ,  where there is a 
discontinuity u2 in s,, and on the singularity at the corresponding point K 
in the Cl plane where sl changes by (ul-ui), gives 

B = - 2m4k2ul tan 41 (32)' 
and D = - d2m4kzul sec dl. (33) 

The functions dw,/dc,, dw,/dl;, are now determinate, and the solution 
of the problem is complete. The pressure at any point can be obtained 
by integration of (24) and (27) in terms of elliptic functions, but since in 
most cases only the pressure on the face of the wedge will be of interest, 
it is easier to evaluate the integrals numerically as required. 

4. THE SPECIAL CASE OF A TEMPERATURE FRONT 

When the two media concerned are both composed of the same gas, 
but at different temperatures, some simplification is possible. 

The gas laws then give k = p1/p2 = T, /Tl ,  cy/cg = m2 = Tl /T, ,  and 
m2k = 1. It will generally be sufficient to use a first approximation, writing 
the absolute temperature ratio as T2/T1 = 1 + E  and retaining only linear 
terms in E .  Then k = 1 +e, m2 = 1 - E and sec2 4, = sec24,(1  tan^$,). 
Equations (25),  (26) and (30) to (33) then lead to 

4M1 See2 sin 41 
P -  

- (~,cos2+,-1)~ (341, 

and 

f (35) 
d2M1 S E { (  1 + 5,) + sin2 4,(C2 cos '2q51 - l)} 

cos2 +1( c2 cos 2& - 1)2  
Qz = 

and equation (24) gives 
(1 - - 7~ ds 2a sin 4 - - =  

MSE da (a cos 24 + 1)2(  1 - (2a)1/2 cos2 $( 1 + a cos 24)2 + 
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and the suffixes have been dropped, since the use of M, for M2 introduces 
errors only of smaller order than the terms retained. The corresponding 
result in the other medium is, from (27), 

2u sin 4 (1 - a)li2 - r ds 
IEZ i~ - (a  cos 24 + 1)2(1- a)1/2 + (2a)l/2cos2+(1+ u cos 2412 - 

tan2 + - (6 = -47~). (38), 
(2u)112( 1 - u)li2( 1 + u cos 24) 

Integration of (36) gives 

s2 - o2 
M& - sin3 24 

sin 4 cos 24 2 sin $( 1 - a2)lI2 2 sin 4 cos 24 
7~ sin3 24 X -- - 

7~ sin2 24( 1 + a cos 24) - 

sin2 4 1-a(1+2cos2+) 

{ 1+acos24 
s i r 1  -~ 

277 C O S ~  4 
and a similar result follows from (37). 

5.  APPLICATION TO GENERAL SYMMETRIC AEROFOILS 

In  the linearized theory, superposition of results is allowable, and the 
motion of a general symmetric aerofoil can be obtained by regarding it 
as being made up of a number of wedges. 

Define a function G(h), - cm < h < 00, as follows. For 0 < h < CO, 

the value of SG(h) is equal to the condensation, s2, in the above solution 
on the line 6 = 477 at the point A. For - co < A < 0, the value of SG(X) 
is the condensation at 6 = -477, A. 

Now consider a symmetric aerofoil defined by 

- X ( y )  < x < X(y) ,  - a  < y < 0, 
where x,y  are Cartesian coordinates moving with the aerofoil and based 
on its leading edge, and write 

for the slope of the surface, assumed everywhere small. 
The condensation on the aerofoil before the leading edge breaks the 

surface of separation of the media is the same as in steady motion in medium 1. 
When the aerofoil is part way through the interface the condensation due 
to that part which has passed into the second medium is given by the 
foregoing theory, but the flow due to the part which has not yet left the 
medium 1 is still the steady flow appropriate to medium 1. Consider the 
conditions at a time t, less than a/ V, after the leading edge breaks the surface, 
then the foregoing arguments give, on the aerofoil, 

+(Y) = - W d Y  

x G ( F +  "*) dy* (0 > y > Vt), (40) 
vct -F €y* -- 
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and 

- Msec +1 1: V t  {$(O) - t,h(y*)) dy* ( - Vt  > y > -a) ,  (41) 

where V is, as before, the (supersonic) velocity of the aerofoil. When the 
aerofoil has completely passed the interface only the expression (40) is 
required. 

6. NUMERICAL RESULTS FOR A DOUBLE WEDGE PASSING THROUGH A 

As an example, consider the motion through a temperature front of 
TEMPERATURE FRONT 

a double wedge, of angle 6 and length 2b. 

A H /""H dh h H fl"H dh 

1.0 to 1-5 
0.95 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0-35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

-0.1341 
-0.4896 
-0.5867 
-0,6328 
-0.6557 
-0.6654 
-0.6636 
-0.6570 
-0.6461 
-0.6322 
-0.6167 
-0.5960 
-0.5822 
-0.5623 
-0.5424 
-0.5223 
-0.5017 
- 0.4810 
- 0.4602 
- 0.4399 
- 0.41 88 

0 ~00000 
- 0.01 5 59 
- 0.04250 
- 0.07299 
-0.10520 
- 0.1 3823 
-0.17145 
-0.20447 
- 0.22704 
-0.26900 
-0.30022 
-0.33054 
-0.36000 
-0.38861 
- 0.41623 
-044284 
- 0.46844 
- 0.49301 
- 0.51654 
-0.53904 - 

-0.56051 

-0.05 
-0.10 
-0.15 
- 0.20 
- 0.25 
- 0.30 
-0.35 
- 0.40 
-0.45 
-0.50 
-0.55 
-0.60 
- 0.65 
- 0-70 
-0.75 
- 0.80 
-0.85 
- 0.90 
-0.95 

.1.00 to --co 

-0.3978 
-0.3775 
-0.3567 
-0.3359 
-0.3153 
- 0.2948 
- 0.2744 
-0.2532 
-0.2415 
-0.2139 
-0.1939 
-04779 
-04535 
-0.1335 
-0.1124 
-0.0935 
- 0.0738 
-0.0539 
-0.0334 
- 0~0000 

-0'58092 
- 0.60031 
-0.61866 
-0.63598 
-0.65226 
-0.66751 
- 0.68174 
- 0.69493 
-0.7073C 
-0.71868 
- 0.72888 
- 0.73818 
- 0.74646 
- 0.75363 
- 0.75978 
- 0.76493 
-0.76911 
- 0.77230 
-0.77449 
-0.77532 

Table 1. 

It is convenient to tabulate a function H(X) defined by 

'Then (39) leads to the results in table 1. 

a correction factor e is given such that the total drag is 
The drag on the aerofoil then follows from (40) and (41). In table 2 

pct u1 bS{2 - eel. (42) 
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The correction factor is tabulated against Vtlb, that is the number of half’ 
lengths by which the leading edge has passed the interface. 

I I 
1 14 2 3 4 5 

0.2808 0.2752 0.3103 0.5476 0’0817 -0.0209 04712 0.2682 

Table 2. 

When Vt/b exceeds 6, the transient effects no longer influence the drag 
and the drag is constant and equal to that for steady motion in the new 
medium. 
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